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Abstract

A Fortran program for calculation of aerody-
namic forces on oscillating wing configurations
in subsonic flow has been developed on the basis
of the so called Polar Coordinate Method. In this
method, the normal velocities, that correspond to
the functions in a linear approximation to the
jump in the advanced velocity potential, are cal-
culated by using polar coordinates as integration
variables and a tangent function for subtraction
of the kernel function singularity. The program
which is applicable to configurations with con-
trol-surfaces has been applied to the Viggen con-
figuration., Results from this application are
shown in the paper together with favourable com-
parisons with reliable results of other methods
for three simple wings.

Symbols
A aspect ratio
A aerodynamic coefficients
pya 2
B 1-M
CL 1ift coefficient
CM pitching moment coefficient
h: i shape function for the p®® mode and the
p surface Sn
L reference length, specified in examples
M Mach number
p p'/(%PUz), normalized pressure
Ap(u,v) difference between values of p on the
two sides of Sn
S reference area, specified in examples
U free-stream velocity
xn,yn,zn local coordinates for Sn, normalized
and referred to L
Di E arbitrary parameters determining P., i =
’ 1y 2y ves 5, in Eq. (40) and (41) *
i,n
Zi,n
P free-stream density

zki(u,v) difference between values of the advanced
velocity potential on the two sides of Sn

/‘S’ vS numbers of chordwise and spanwise factors

in approximations to Ag(u,v)
w w/(U/L), normalized circular frequency
/3 Vﬁ?, the Prandtl-Glauert factor
Introduction

In oscillating-surface theory, the oscillating
wing is replaced by a thin planar surface. In
analogy with this theory, we assume here that a
complete aircraft or a general wing configuration
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may be replaced by a number of thin planar sur-
faces, These are chosen as trapezoids. The pres-
sure jump that results across the trapezoids due
to the harmonic oscillation can be obtained from

a linear approximation to the jump in the advanced
velocity potential and this approximation can be

. determined on the basis of the condition for the

normal velocity. This implies that the normal
velocities that correspond to the functions in
the approximation have to be calculated. In the
Polar Coordinate Method which will here be de-
scribed and applied, this calculation is made by
using polar coordinates as integration variables.

The Polar Coordinate Method which has earlier
been applied to planar wings in Ref. 1 and to
wing configurations in Ref. 2 also employs a tan-
gent plane to part of the integrand for subtrac-
tion of the kernel function singularity. This
procedure which was studied in Ref. 3 gives rise
to two integrals one of which can be evaluated in
closed form and the other numerically.

The Fortran program that was employed in Ref,
2 has been improved by using polar integration
variables in all integrals and not only in those
for which the integration region contains the
control point projection. As the Viggen configura-
tion makes great demands on the method that is
used, the improved program has been applied to
this configuration. We show here some of the re-
sults and present in addition a few comparisons6
with certain reliable values from other methods
for simple wings.

The investigation shows that the computer pro-
gram developed is capable of producing accurate
results and that it is more economic than the
Fortran program that was first developed,on the
basis of the Lifting Line Element Method?.

Preliminaries

We consider an idealized configuration consist-
ing of thin planar trapezoidal surfaces whose
parallel sides are directed in the free-siream
direction. The shape and orientation of the n
surface which is denoted by S , n =1, 2, ... Ngy
is uniquely defined by the position vectors of
its corners. These vectors which may be given in
terms of components in a basic coordinate system
form input data to the computer program developed.

In addition to the basic system, we use a local
coordinate system for each trapezoidal surface.
The coordinates of an arbitrarx point in the local
system for S_ are denoted xn,y ,zn. The x -axis
and the z"-aXis shall be directed in the free-
stream direction and in the positive normal direc-
tion respectively, the origin shall lie at the
center of the inboard chord, and the yn-axis shall
point to the outboard chord.

The positive normal direction and the inboard
and outboard chords are defined by the order in
which the input data for the position vectors of
the corners are given., We prescribe the following
order: downstream corner at outboard chord, up-



stream corner at outboard chord, upstream corner
at inboard chord, and finally downstream corner
at inboard chord. The positive normal direction
is defined as the direction of advancement of a
right-handed screw when rotated in agreement with
the order mentioned. If Sn is joined to another
surface only along one of the side edges, the
other free side edge shall be regarded as the
outboard chord.

It is understood that all quantities in the
sequel are dimensionless quantities unless other-
wise specified. The coordinates x ',y ,z and all
other lengths are referred to some typical length
L, velocities to the free-stream velocity U, and
potentials to UL. The perturbation pressure p
a5 rSferred to the free-stream dynamic pressure
%}f’U and the reduced circular frequency W is
referred to U/L.

We use the so called advanced velocity poten-
tial, the advanced pressure, and the advanced
normal velocity. In the harmonic case which is
here considered, these guantities which have pre-
viously been introduced? are defined as the prod-
ucts of the ordinary quantities and the factor
exp(iw (-7 " being the x"-coordinate of

))s x
the origin o} the 1ocal coordinate system for S1.

The gquantities, that shall be calculated, in-
clude in the first place the generalized aerody-

namic coefficients Ap q.These are defined as
y
follows. Consider a given dimensionless shape

function H (xn,yn) and let the configuration
oscillate X with an amplitude equal to LH™(x%,y")
in the normal direction of S_, Due to the? oscil-
lation there appears a perturbation pressure

p (x",y",2") in the flow and a pressure jump
adross Sn' This jump is defined as

Apg(xnoyn) = Pq(xnoyn,o"') - Pq(xn,yn,o') (1)

and is related to the jump Ag? (x*,¥™) in the
advanced velocity potential byq

Al (u,v) = - 270D AF () (2)

where the subscript u indicates differentiation
with respect to u. The aerodynamic coefficients
are defined by the formula

n

Ap,q = Is'—zszJH;(u,v) Apg(u,v)dudv

n=1§
n

which can also be written in the form

> & _ 3
*p1q o ZHH;(“'V)eqw(u'x1)Agfqu(u,v)dudv
Wi (4)

(3)

If the first two shape functions define rigid
translation and pitch with amplitudes L and one
radian and if the reference ares S and the refer-
ence length L are the same as the reference quan-
tities used for the ordinary coefficients C. and
C,,, the coefficients A1 and A2 are equivalent
with C  and Cp. i 14

The numerical procedure that has been developed
is based on a linear approximation to the jump in
the advanced velocity potential. In order to sa-
tisfy the condition for the normal velocity it is
required to calculate the normal velocities that

correspond to the functions in this approximation
at suitably located control points. The calcula-
tion of these velocities is the main task that
will be considered in the sequel,

Theory for calculation of the normal
velocity matrix
The advanced velocity potential F(x") =m§(xm,
y™,2®) at a point with coordinates xM,y™,z
in the local coordinate system for S, may be
expressed in the form
s

=) -f -&‘)—;(47TReiwr)’A](u.V)dudv (5)

n=1 8 +W
n n

where T= (u-xheMR)/B, R = (p24B(z™)%)%, p -

((u=x)24B(v=y™)?)®, and B = 1-M°. M is the Mach
number, ne the number of surfaces, and.bjﬂu,v)
the jump in the advanced potential across Sn.

The integration region consists of the trape-
zoidal surface S_ and its wake, but the latter
region may be re%laced by a finite area, for the
contribution from the distant part of the wake is
small and negligible. In the sequel, the symbol
W  therefore denotes a cropped wake, Usually it
id satisfactory to cut off the wake at a-distance
equal to 4/3s from the downstream end of the con-
figuration; s being the semispan and 3 = VB® the
Prandtl-Glauert factor.

For a given advanced potential jump across
each of the surfaces, the relation (5) defines
the corresponding advanced potential, It also de-
fines integral expressions for the advanced veloc-
ity components which can be obtained by differen-
tiation. The component W~ in the normal direction
of S which we are interested in is obtained by
differentiating the integrals in the sum (5) with
respect to 2",

A numerical procedure for calculation of W
has heen developed by using polar coordinates as
integration variables., This approach1wgich has
been described in two earlier papers ’° is favor-
able, for the strong variation of the known inte-
grand part occurs exclusively with the radial
variable P while the variation with the angular
variable 6 is slight. The polar variables are
defined by the relations u-x" = pcoso and /s(v-
) = psingd,

The differentiation and the introduction of
the polar variables results in the following
formulas:

n

S
wn o wm,n (6)
gl ” F(p,6)dp d6 (7)
S_+W
n n
F(,8) = (G or” + H M) iaf;-iPAf(u,V) (8)
0z° 02 4R

Gl -Aznf(3-Q2+BiQ)sine (9)
B = - B(az")2 + (1+iQ)(- p2+28(2")?) (10)
Q = WMR/B (11)
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R =

(12)
(13)

(p%a(zM5)?
= (fcose + MR)/B

The integral (7 ) may be evaluated by first
integrating in the radial direction. The inner
integral will then be a functien of ©. Due to the
corners of the integration region S _+W_, this
function exhibits irregularities at the values of
® that correspond to rays through the corners,
The outer integral in © is therefore computed as
a sum of subintegrals over the intervals between
the irregularities, Thus we write

s 95 fFs
woo o =Z J e J F(p,0)dp
r=1 OI -PI

where GI and QS denote the values of 6 at the
subinterval. The limit JDS

(14)

ends of " the r is
the value of P at the distant edge while L1 is
the value at the near edge.

The number of subintegrals r.,, the interpreta-
tion of the subintegrals, and the method employed
for evaluation of these depend on the location of
the control point x . In particular we must dis-
tinguish between the case in which the projection
(x®,y?) of the control point on the plane z™ = 0
lies within S_+W_ and the case in which the pro-
jection lies outside this area. The limit .fI is
zero in the former case.

If the projection lies outside S_+W _, the inte-
gral for W is calculated as a sum ol three sub-
integrals. The corresponding subregions which
are formed by rays through the corners of S _+W
are shown in Fig. 1 . They consist of one gua =
rilateral and two triangles. The subintegrals are
calculated by a numerical routine that has been
written for the quadrilateral and is applied to
all three regions, This is possible since the
triangles are special quadrilaterals.

xn
5
n
. Sn+wn i
Xn
%y
X WY )
FIG. | DIVISION OF Sp+ Wp

As can be seen from the figure, one has to
calculate position vectors for two intersections
between two rays and two edges of S +W which
can be done by a simple formula., The formula
demands, however, approprlate input data which
depend on the location of (x y¥ ). For each corner
of S +W_there are three sets of data which corre-
sponfl t8 three areas within which (x ,y ) can lie,
These arecas are bounded by the extensions of the
edges and the diagonals of S +W .

The numerical gquadrature routlne flrst trans-
forms the position vectors x?, xg, _n 4, and x
for the corners of the guadrilateral”and 'the
control point into new vectors. The new vectors

which are denoted by X , x 9 X , and X are

obtained by multlplying the coaponénts in the y -
direction by /3. The quadrilateral corresponding
to the new vectors which define the integration

OI, and OS

limits PI’ PS’ is shown in Fig. 2.

A=)

(=" py")

FIG.2 INTEGRATION LIMITS FOR SUBINTEGRALS

The integrand of the inner integral may be
irregular at the limits and p., The variable

is therefore changed. Wg define™a new variable
of integration s by the relation

(pg-pp)(35°-25°) (15)

Y A

which effects a stretching at the ends of the
interval. By further putting

6 = 8, + (85-8.)t

(16)
the relation (14) assumes the form
r
S 1
woon -Z -6 )J6 Ps- fI)dt (p,0)(1-8)sds  (17)
r=1

The integrals in this expression are evaluated
by numerical guadrature, This is performed by di-
viding the normalized integration intervals into
subintervals of equal length and by applying the
Gaussian formula with 2 integration points in
each subinterval, Thereby we obtain the formula

e NZ 2JSZ 6(3:3 PI ZSF (p,0)(1-3)s (18)

where
0 = 8, + (85-0.)t (19)
t = {(J SN )/(25g) edd (20)
(3-1+1/¥3 )/(234) j even
P = pr+ (pg- pr)(35°-29%) (21)
and
{(1 -1/Y3 )/(2ig) i odd (22)
(i-1+1//§')/(2is) i even
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The subinterval numbers i
determined in a way that w§11
sequel.,

and J may be
be deScribed in the

If the projection (x",y") lies within S +W ,
we must distinguish between two subcases. hese
subcases which correspond to z% # 0 and 2" =0
must be treated in different ways,

The subcase gz % 0 involves no difficulty,
for the numerical procedure that was described
above can be used also in this case., The behav-
iour of the integrand at the trailing edge makes
it desirable, however, to calculate the integral
as a sum of separate integrals over S_ and W_.
For this reason and as the projection can 1i8
either on S or on W_ we get two subdivisions,
These are sflown in Fig., 3. The formala (18) can
be applied to each of the two subdivisions which
contain 7 subareas. Hence, rg = 75

FIG. 3 SUBDIVISIONS FOR THE CASE IN WHICH THE CONTROL
POINT PROJECTION LIES WITHIN Sp OR W,

The subcase z° = O represents a difficult
problem, for it requires that the limit of the
integral (7) for z approaching zero shall bte
calculated.

We use for this purpose the tangent plane
concept which was introduced in Ref., 3 . This
implies that a linear function which defines a
tangent plane to part of the integrand is sub-
trasted from the integrand part. In an earlier
investigation we used a so called tangent
function instead of the tangent plane, but the
tangent plane yields a slightly simpler and
aqually efficient procedure.

"he integrand part considered consists of the

product AB(1+iQ)e Aj'u,v). By expanding this
product about the point (x",y",0) and by neglect-
ing second order terms and terms of higher order
we obtain

-iw? E

‘ier_g(u,V) Q,w/_;(niq)[ 1 - iw(u-xn)/B

- 10]{ag + af,(a-x") + A8 (vy")]
A1 - 1w/ [af + aF (e + ag, vy &
AAF + (/SAfx— %)Af)(u-xn) +Afy/3(v-yn) i

A(1+iQ)e

=pRAag + [(/Jij - %’Azf)cose +Afysine]9 (23)

where :

Af: A}(xn,yn) (24)

aAg - g-;dﬂxn,yn) (25)
; n n

A}ry =CFA_Z?(X Y ) (26)

The final expression in the right hand member
defines the tangent plane to the integrand part
at the point (u,v) = (x ,y ). Subtracting the
tangent plane from the integrand part and compen-
sating this by addition of the same function, we
get an expression for W ' which may be written
as

woon

=E+S (27)
The term S in this formula is the limit of that
integral, that contains the difference between
the integrand part and the tangent plane. The
integrand of this integral remains regular at

the point (u,v) = (x ,y ) when z assumes the
value zero, and so the limit of the integral can
be obtained by integrating the limit of the inte-
grand. The limit of the integrand reads

F(@,6) =[{54f+ ((pag_ - /i"s"ydf)cose +af sind)p -

L RN S )
e J ]477«92

As this function is finite and continuous for

O fé—f , we may again employ the numerical
quadraturé procedure described. As in the previous
subcase, the application is made by using the sub-
divisions of Fig. 3.

(28)

The term E which is evaluated in closed form
is finally defined by

M s

E= iriln-l.o Jd@ J[/uf + ((pag, - —i/fva_g)cose +
0 o0
. 2 2\ KRIP
+Afys:.n9)f](—p + 2B(zn) )lf_ﬂg (29)

The evaluation is performed by decomposing the
outer integral into subintegrals over the four
triangles which are formed by the rays through
the corners of S _+W_. Assuming that the triangle
in Fig. 2 represgntg the rth of these triangles,
we may define a unit vector e along the outer
edge as

e = (o) = (F-%))/| 5% (30)
Defining in addition & normal vector n by n =

(e ,-e_), we may put

¥y ox
D~ (F-%)n (31)
t, = (F,-F )ee by = (BX)-e (32)
-n _n T
P2 = 1% P = 15X (33)
iw
B, = (ﬂdfx 5 Aj:")ey -Afyex (34)
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and
B, = (/mfx = %’Aﬁ)ex -A_g}'yey (35)

By means of these guantities the final formula for
E may be written

E = 4—1”7 (BAgLy + B,1, + B,L,) (36)
r=1

where

1, = (t3/5p5 - t,/P,)/D (37)

iy e (1+lnf>3)t5/f5 + (1+lnfb)t2/92 +

+ é‘ 1n (?3+t3)(?2_t2)/(?2+t2)(?3'*’3) (58)

and

I, = D(1+lnf3)/?5 - D(1+lnf2)/f)2 (39)

¥or practical applications of the quadrature
formula (18) one has to choose suitable values
for the subinterval numbers i, and j.. This
choice is made indirectly by means o§ the formu-
las

ig = By + WNI{(pg-p)(P,+P;w(1+Mc0s0)/B))  (40)
and
ig = B, + (P fe -6.]) (41)

The function INT( ) is the largest integer
that does not exceed the argument, As the inte-
grand (8 ) varies more rapidly on rays in the
downstream halfplane than on rays in the upstream
halfplane, the factor 1+hcos® which is larger
in the former case than in the latter has been
included. The parameters P. are assigned values
in accordance with the foliowing relations

n n .
LA Di,n (x ',y ) outside S5, +W,
; N VAT ey
Zi,n id2y (x ’i ) within S,
2, z #£0
i,n ——
100| 27|
Tedfla ol \
Lsi,n (x ,Z ) within S W,
2 = 0
(42)
where D represent specified

sy S, , and 2 &
input da%&? Th2%8 need ndt"be the same for the
different surfaces.

Approximation of the potential jump

The advanced velocity potential jump Aj{u,v)
across S_ which was assumed given in the previous
section is approximated by the linear combination

Ag(u,v) %Z ZS SF(E)T’.D(?)a}l,D %
=1

<
n

€ [F1,k(g’?)c1,k+F2.,k(§"2)02,k] (43)

where s,(§), t,(n), F1’k(§,9), and Fz,k(f’?) are

given funGtions,

Th%hlatter two functions are associated with
the k control-surface on 5_ which may be fitted
with k. control-surfaces., These functions are in
essencé the same functions as those defined in
Ref, 1 ., They shall account for the irregular
behaviour of the potential jump at the leading
edge and at the side edges of the control-surface.
The irregularity which corresponds to the dis-
continuity in the given normal velocity at these
edges is obtained by considering the potential
that is defined by a source distribution with a
corresponding discontinuity at the control-surface
edges. The discontinuity can be represented ap-
proximately by means of the coefficients C1 " and
C K which denote the amplitudes of relativé
t%ﬁnslational and rotational oscillations of the
k control-surface.

The functions sﬂ(g) which represent integrals
of the Birnbsum-Glautrt functions are defined by

au(g) = { o®) + 120 M1 (a8)
(1-pi-g)P M=
LV}‘(f) M >2

1
-

W - {o® PRI
75() P
Lzﬁ_lﬂ Ueo§) Tr W) p

sin(ue(§)) (46)

5.(F)
and

o(g) - "{+ sin”'g (47)

The arguments g and ? are normalized chordwise
and spanwise variables. These are defined by

H

and

%3/ (49)

where s is the span of the trapezoidal surface
S and x? and x2 the x™-coordinates for the lead-
ing and Trailing edge.

(2w - xp-xp)/(xp-x7 (48)

The spanwise factors t,(v) are chosen either

as V,(n) or as P (p) where® P (%) is the
d-i n

Legendre polynomial of order n. The first alter-
native is used if the outboard chord is a free
side edge while the second alternative may be used
if the surface S_ is joined to other surfaces at
both side edges.
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The definition (48) for the variable ¥ which
has been chosen for the reason.of simplicity is
not entirely satisfactory. In case of a wing
consisting of two trapezoidal parts with differ-
ent edge slopes, the derivative of g with respect
to is discontinuous at the common chord. In
order to avoid such a discontinuity for a tapered
symmetrical wing, a different definition was used
in Ref. 1. This is implicit and reads

n 2 2,2 2]& 0
X" = B4BLE +(B5+B8)[E7(1-5) "+ (50)
where € is a small arbitrary parameter. Since the
coefficients Bi are defined such that

x? = B,-B,+(B;-3,)[1] (51)

and
n
Xp = B1+B2+(B3+B4)Ivl

the definition (50) is equivalent with (48) in
the case of & = 0. In the case of £ # 0, the
formula (50) implies that the curves, for which

is constant, are hyperbolas, These are regular
at the root chord and the discontinuity in the
derivative with respect to is thus avoided if
the definition (50) is used.

(52)

As it is difficult to define regular coordinate
lines in the case of a configuration consisting
of several trapezoidal parts, the formula (48)
has been employed in the present version of the
computer program developed.

Some initial examples

The method described, which is called the
Polar Coordinate Method or the PCM for short, has
been programmed in Fortran for the CDC 6600 com-
puter.

When running this program, one has to use
suitable values for the quadrature parameters
Di,n’ si,n’ and Zi,n and for the numbers of
chordwise and spanwise factors Mg and\}s. In
principle, it should be possible to achieve high
accuracy by choosing large values for these pa-
rameters, but in practice there are certain lim-
its. The values, that can be used, are limited by
the size of the central core memory and by the
acceptable computer time,

It appears, however, that satisfactory accura-
cy can be obtained in practical cases by using
rather small values for Mg and Vg and the quadra-
ture parameters, This implies that the computer
time will be moderate., We try to show this in a
few examples for simple wings for which reliable
solutions from other independent methods are
available, Theseexamples also serve as a guide
for selection of values for the arbitrary param-
eters in new applications.

The rectangular aspect ratio wing was treated
by Garner, Hewitt, and Labrujere® in their inves-
tigation of three different lifting-surface theo-
ries. As the three theories produced very closely
agreeing values for the lift coefficient C. and
the moment coefficient CM, we consider these

values reliable and use them for comparison. Re-
taining only agreeing figures,'we may quote the
results as C. = 2,474 and C, = -0.518. These
values are vakid for unit incigence and incom-~
pressible steady flow. The moment axis is the
leading edge and the reference area and the refer-
ence length are equal to the wing area and the
wing chord.

In an application of the PCM to the same wing,
the numbers of chordwise and spanwise factors
were chosen as 5 = V% = 2, This application
produced the results Cj = 2,46 and Cy = -0.517
which are in close agreement with the results of
Garner, Hewitt, and Labrujere. We may hence con-
clude that Cp and Cy for rectangular wings can be
calculated by using only a few terms in the ap-
proximations to the potential jump.

The effect of varying the input values for the
quadrature parameters was studied in three runs,
The result of this study is that the corresponding
changes in the aerodynamic coefficients are small.
The results for Cj and Cy from the three runs
in which the parameter sets Dj o = 55 9 = 2, 8,
1, 2, 43 4, 16, 1, 1, 23 and 4, 16, 1, 2, 4
were used, were found to differ by less than one
unit in the third figure.

5 . T
/vl REAL PART
r__/_’i/
o PCM TR
r x REF. 7 :
. IMAGINARY
RT
’,n—""'o'—-—-o--[-o-—eé-——o-——o- J
%9 ] w 2

FIG.4 LIFT COEFFICIENT FOR A RECTANGULAR A=2 WING
OSCILLATING IN TRANSLATION

Considering now the case of the oscillating
rectangular wing, we compare the PCM results with
values from Ref., 7 . These values were calculated
by the method of Legendre polynomial expansion in
square boxes“ ., The comparison which is made for
rigid modes shows that the results from the two
methods are in close agreement., This is illustrat-
ed in Fig. 4 for the 1ift coefficient in the case
of translatory oscillations at the Mach number
M= 0.9.

Garner, Hewitt, and L&brujere6 treated also
the swept Warren 12 planform in the investigation
of the three lifting-surface theories. This wing
has aspect ratio 2¥2 , taper ratio (3-“5‘)/3 =
0.529, and leading edge sweep angle tan-1(1+V2/4)=
53.5 degrees. The results for Cp and Cy for unit
incidence in steady incompressible flow from the
three theories are slightly different, but they
do not deviate by more than 0.01 from the values
2,76 and =3,12 respectively. The moment coef-
ficient is referred to the mean chord and the apex
in this case.

The PCM was applied to the Warren 12 planform
for the parameter values ,US = Vs =4 and D4 5 =
i,1 =2, 8, 1, 2, 4. The results of the applica-
tidn which read Cp = 2.79 and Cy = -3,10 are
seen to agree satisfactorily with those of Garner,
Hewitt, and Labrujere,

w
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FIG. 5

The differences between the two solutions for
the aerodynamic coefficients which amount to
about 1 per cent correspond to a difference
between the 1ift distributions produced by the
two methods. From Fig, 5 we see that the two re-
sults for the 1ift distribution which agree very
well on the outboard part of the airfoil are
slightly different at the root chord. This differ-
ence may be attributed partly to the use of the
formula (48) for § which yields a discontinuity
in the spanwise derivative of the approximation.

As an example for an oscillating swept wing we
consider the AGARD wing E, This has aspect ratio
2, taper ratio 0.2376, and leading edge sweep
angle 60 degrees., The oscillations considered are
rigid plunging oscillations and pitching oscilla-
tions about the center of the root chord. The
amplitudes are L and one radian respectively and
the reference quantities L and S are equal to the
semispan and the wing area.

The PCM program was applied in four runs for
different parameter sets. These sets and the
corresponding computer times are given in Table 1
while the resulting values for the aerodynamic
coefficients are given in Table 2.

Table 1 Parameter values and computer times
. ) CP-t1
Run| M1 Vg | D35 = 8 4 et
114 |4 2, 8, 1,1,2 21,1
2 4 4 4, 16, 2, 2, 4 68.3
3 16 |6 A T6,2, 2, 4 244.6
4 6 6 Py Byl V52 68,7
Table 2 Aerodynamic coefficients for the
AGARD wing E. M = 0.8, W= 1,
A
p| Run Pyl Ap,2
Re Im Re Im
1 1 -0.852) 2.594 | 2.597 | 2.988
2 -0.864 12,585 2.578 ) 2.994
1 -0.,812 | 2,610 | 2,663 | 2,921
4 -0,812 | 2,619 | 2.674 | 2,928
2 1 -0.485 | 0,690 | 0.432 ) 1.644
2 | -0.486 [ 0.686 | 0.427 | 1.643
7 -0.502 | 0,715 [ 0.470 | 1.693
4 ~0,503 | 0.717 [ 0.473 | 1.696

It is seen from the table that the effect of

varying the quadrature parameters is small while

that of increasing the number of terms in the

approximation is slightly larger.

% 0.5 M

FIG. 6 LIFT COEFFICIENT FOR THE PLUNGING AGARD WING E

10

The values obtained for the aerodynamic coef-
ficients in the two runs for Mg =Vg = 6 have
been found to be in very satisfactory agreement
with the results given in Ref. 1 . This agreement
is illustrated by Fig. 6 in which the 1ift coeffi-
cient for translatory oscillations is plotted. Be-
cause of this agreement and since the independent
program version that was used in Ref. 1 employs
the more satisfactory definition {50) for ¥, we
are inclined to believe that the results for

Mg =Vg = 6 are accurate.
=== Hs*Vs =6
o n o= n =z 4

FIG. 7 DIFFERENTIAL PRESSURE ACROSS THE PLUNGING
AGARD WING E. M=08, W=,

By studying the 1lift distributions for Mg =
VUs =4 and Mg = V5 = 6 which are plotted in
Fig. 7, we find again that the results for the
pressure difference are more accurate on the out-

board part of the airfoil than on the central
part,

Application to the Viggen configuration

In the application of the PCM program to the
Viggen aircraft, this has been replaced by an
idealized configuration. The configuration which
is shown in Fig. 8 consists of 4 pairs of trape=-
zoidal surfaces, The main wing is represented by
the surfaces S,, S,, S,, S,y S,, and S_ and the
forward wing ig reBresénteg by7S and “S.. The
former six surfaces and the latter two 1§e in
different parallel planes; the distance between
the planes being 18.4 per cent of the semispan of
the forward wing., The x- and y-coordinates of the
corners of the surfaces S in the coordinate
system of Fig, 8 are given in Table 3.
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IDEALIZED VIGGEN CONFIGURATION

FiG. 8

Table 3 Coordinates of the corners of Sn

n x-coordinates

1 0,4664 0.3445 -0.5162 0.5162

2 1.7753 0,8381 0.3293 1.8217

3 1.7515 1.253%6 0.8381 17758

4 1.7317 1.6159 1.1830 1.7515
y-coordinates

1 0.,5172 0.5172 0. 0.

2 0.5172 0.5172 0. 0.

3 0.7795 0.7795 0.5172 0.5172

2| 1.0000 1.0000  0.7795  0.7795

Although the PCM program is capable of treat-
ing elastic modes we limit this study to rigid
modes. In addition to translation and pitch of
the complete configuration, pitch of the forward
wing, and translation of the main wing, we con-
sider symmetric control-surface rotation. The
leading edge which represents the axis of rota-
1ion and the inboard side edges of the control-
surfaces are formed by the intersections with the
planes x = 1.,6367 and y = t 0,6369. The shape
functions for the five modes may be defined as
follows:

H = J 1 on

s B, Boiie iy 5 &
x " — ] — ]
{x+0.5162 " 8y0ds p=3
0 " 5395495615715
{1 " — ] ——— p=4
i\
0 5,15
x-1.6367 "  the control~surfaces p =5
Lo off "

As the upwash at some distance ahead of a wing
is small, the interference 1lift on the forward
wing due to deflections of the outboard or down-
stream part of the main wing is also small. The
elements in the aerodynamic coefficient matrix,
that correspond to oscillations of the control-
surfaces, can thus be calculated by treating the
main wing alone.

Another reason for considering the isolated
main wing is the need for determining suitable

values for the quadrature parameters in a simple
study. The PCM program has therefore been applied
for steady flow to the isolated main wing in four
runs for different parameter sets:

Run 1: D; = 2, 16, 1, 1, 2
?

i, =2, 8, 1, 1, 2

Run 2: Di A 2, 30, 1, 1, 2
1]

i,n = 2, 8y 1, 1, 2

Run 3: Di n= 2 16, 1, 1, 4
?

Si,n =2, 8, T 1y 2

Run 4: Di,n =2, 16, 1, 1, 2

S n =2 16, 1, 1, 2
*

It is possible to use different sets of param-
eter values for the different surfaces, but this
capability has not been utilized here. The number
of chordwise and spanwise factors were chosen as
(Fs'”%) = (3,4), (3,3), and (3,3) for the three
parts of each wing half,

Table 4 Lift and moment coefficient for the main
wing at unit incidence in steady flow.

M= 0,9.

Run Cy, Cy
1 3.348 -0.053
2 3,299 -0.059
! 34347 -0,054
4 3.348 -0,054

The results for the 1ift and moment coefficient
are given in Table 4. It is seen from this table
that the effect on C. and C, of the quadrature
parameter variation 1Is not %arge. For moderate
demands on accuracy, it therefore seems satifac-
tory to use any of the four sets.

Lift distributions and aerodynamic coefficients
for oscillations in the control-surface mode have
been calculated by using the parameter sets em-
ployed in the fourth run, In addition, four pairs

of functions F and F, | corresponding to 2
control-surface’parts fo? each of the surfaces 33
and S, were considered in the second summation in
Eq. (ﬂ}) and the coefficients Cq ) and Cp i for
these parts were put equal to 0’ and 1 ’respec-
tively. The results for the aerodynamic coeffi-
cients are given in column 5 of Table 5 where
results for the remaining four modes are also
collected. In these calculations the central pro-
cessor time for a run for one frequency value
varied from 68 seconds for W= 0 to 88 seconds
for W= 1,067.

As illustrations of the results we show the
1ift distribution and the lift coefficient for the
control-surface deflection considered and steady
flow in Fig. 9 and 10 respectively. The finite
peak that is exhibited by the curves in Pig. 9
corresponds to the small but non-zero value that
was used for the arbitrary parameter that is
involved in the special functions F and Fp .
From Fig. 10 is further seen that thé PCM resilts
for C; agree very well with results from a program
based on the Vortex Lattice Theory” and also that
the two theoretical solutions do not deviate too
much from the experimental result.

319



//j

FIG. 9 LIFT DISTRIBUTION DUE TO UNIT CONTROL-SURFACE ROTATION
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FIG. 10 LIFT COEFFICIENT FOR UNIT CONTROL-SURFACE
ROTATION

Interference effects

Turning now to the complete configuration we
first make & special test., We consider the normal
velocity that is obtained at points on the main
wing for a given potential jump across the forward
wing and its wake. In the steady case the jump
across the wake is independent of the streamwise
coordinate and the flow at a station sufficiently
far downstream is therefore two-dimensional. We
utilize this fact in a check for verifying the
accuracy of the three-dimensional numerical quad-
reture procedure.

We consider the first three functions in the
approximation to the potential jump across the
forward wing. The corresponding potential jumps
across the wake of the forward wing are illustrat-
ed in the small figure at the top of Fig. 11. The
corresponding normal velocities can easily be
calculated by means of the Chebyshev functions.
The results of such a two-dimensional calculation
for points on the plane of the main wing are
represented by the curves in the main figure.

The circles in the same figure represent
normal velocity values calculated by the PCM pro-
gram at points on a line close to the trailing
edge of the main wing. Calculations were made
both for M = 0.7 and M = 0,9, but the results do
not differ significantly.

At the streamwise station considered and for
the Mach numbers mentioned the flow is nearly
two-dimensional. Therefore, it is very gratifying
that there is such a close agreement between the
results from the two-dimensional theory and from
the PCM program., The figure shows in particular
that the agreement is close for the third function
for which the deviation from two-dimensional flow
is smallest and the demand on the quadrature pro-
cedure highest,

° PCM
TWO-~DIM. THEORY

ol

FIG.1I NORMAL VELOCITY ON THE PLANE OF THE MAIN WING
INDUCED 8Y A POTENTIAL JUMP ACRQOSS THE FORWARD
WING AND ITS WAKE
The agreement confirms that the parameter
values employed in the PCM calculation are suffi-
cient. These values read
Lo =2, N8y T, M5 2 n =1
1,n 14 ’ b b H 5
and
Zi,1 = 25 By 1, 15 2

By separate runs like those for the isolated main
wing, it has further been found that the values

Di,5 =2, 165, 1, 1, 2

and

i1 =2, 16451, 1, 2

seem to be satisfactory for the isolated forward

wing. In the application to the complete configu-
ration, we have therefore used these values to-
gether with the values employed in Run 4 for the
isolated main wing. The number of chordwise fac-
tors in the approximations was chosen as 3 for
each of the surfaces while the number of spanwise
factors was chosen as 4 for S,, SQ, 3., and S6
and as 3 for SB' S4, S7, and éa. >

Ir

C, FOR THE FORWARD WING

C; FOR THE
CONFIGURATION

~C{ FOR THE MAIN
WING

h/tsyp+h) !

FIG. 12 LIFT ON THE CONFIGURATION AND THE TWO WINGS DUE TO
UNIT PITCH OF THE FORWARD WING.

It is interesting to consider the third mode
in which case the normal velocity equals unity on
the forward wing and zero on the main wing. The
1lift coefficients for the forward wing, the main
wing, and the complete configuration in steady
flow have been calculated for different separa-
tions of the two wing planes. The results are
shown in Fig. 12 as functions of h/(s1+h) where
h is the separation and s, the semispan of the
forward wing.
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The values plotted for h/(sq+h) = 1 were
obtained in a run for h/s1 = 36.8 in which case
the interference effects may be considered to be
very small, As these values were found to agree
very closely with those from the runs for the
isolated wings, we may regard this as a check on
the proper function of the program.

Calculations have further been performed for
h/s1 = 0,184, 0.368, and 0.736, These runs were
made for the quadrature parameter values mention-
ed above, but the run for h/s, = 0.184 was also
repeated for Di,n =20 59, Ay 1, B3 si,n = 2, 30,
1, 1, 25 and %. =2y 4, 1, 14, 2, The effect of
the increase ifi’the parameters was insignificant,
however. For this reason and because of the com-
parison in Fig. 11, which indicates that the cal-
culation of the downwash due to the potential
jump across the forward wing and its wake should
be accurate, we believe that the results in Fig.
12 are rather satisfactory.

It is seen from the figure that the interfer-
ence 1lift on the main wing increases as the sepa-
ration h of the two wing planes decreases while
the 1ift on the forward wing seems to be nearly
independent of h, The interference 1ift on the
main wing which is opposite in direction to the
direct 1lift on the forward wing almost cancels
the latter as h goes to zero,

FORWARD WING

MAIN WING
M=09

h/s;=0.184

FIG. 13 LIFT ON UNIT SPAN ON THE FORWARD WING AND THE
MAIN WING DUE TO UNIT INCIDENCE OF THE FORMER

From Fig. 13 in which the spanwise distribution
of the load on the forward wing and the main wing
are plotted for M = 0,9 and h/s1 = 0,184 we fur-
ther see that the interference load on the out-
board part of the main wing is very small, For
this reason and as the interference lift on the
forward wing due to deflections of the outboard
part of the main wing is also very small, it doe
not appear likely that flutter can occur because
of aerodynamic coupling between the two wings.

Continued applications of the PCM program to
the Viggen configuration have been made in the
unsteady case with a view to calculate aerodynam-
ic coefficients for the five modes defined. The
program has been run for the Mach number M = 0,9
and for three non-zero values of the reduced
frequency . The quadrature parameter values
were chosen as Di,n = DBy Wy R Si,n = 2,
16, 1, 1, 2; and Zi,n = 2B Ay 15 2= ik
implies that the values employed in the steady
case were retained, The number of spanwise factors
in the approximations was also retained but the
number of chordwise factors for the main wing was

increased., The number was increased to four for
each part of this wing. The increase is desirable,
for the appearing chordwise variations are becom-
ing more pronounced as the frequency increases.

Table 5 Aerodynamic coefficients Ap g for the
1]
Viggen configuration. M = 0.9 .
q 1 2 3 4 5
w 14 Re Im Re I Re Im Re Im Re Im
o. 1o 0 5.977| o 0.336| 0 0 0 0.9429| 0
2 0 0 5.169| O -0,901| © 0 0 1.4535| 0
3 o 0 0.905] O 0.798] 0 0 Q 0, Q
4 o 0 4.349| 0 -1.146| 0 0 0] 0.9429| 0
5 0.0056 0O
0.3551 1 -0.23%4| 2.128] 6.024| 3,969 0,241 0.549| -0.083| 2.000| 0.9158|-0.1987
2 -0,%47| 1.880| 5.113) 4.851| -1.010]|-0.005| -0.256| 2.210| 1.4631]|-0.2222
3 .0,018| 0,306| 0.889| 0,218 0.798| 0.463| 0.033| 0.0t2| 0. 0.
4 |-0.219| 1.578| 4.426| 3.704| -1.259|-0.126| -0,178| 1.991| 0.9158|-0.1287
b 0.0058( 0.0019
0.711] 1 -0,940| 4.500| 6.477| 8.005|-0.020( 1.217|-C.311| 4,158] C.7458|-0.2838
2 -1.%320| 4.1€5| 5.406 10,000 -1.229] 0.119]|-0.883| 4.,81%| 1.2762|-0.3815
] -0,141 | 0.622| 0,861 | 0,545 0.816]| 0.919] ©0.020]|-0.025| ©. 0.
A -0.7%2 | 5.381| 4.886| 7.319|-1.571]|-0.100| -0.330| 4.1€8| 0.7459|-0.2388
0,0061| ©,C037
1,067 * -1.844 | 7.101| 7.084 |11.342|-0.309| 2,130[-0.4%5| 6.266| 0.56683]-0,2964
2o |-2.402 | 6.930| 6.220[14.432] -1.679| 0.568]-1.294| 7.643| 1.0362|-0.4496
¥ -0.29% | 5,998 | 0.924 | 0,791 0.793| 1.%49| 0.008(-0,038] O, 0.
4 |-v.ana | s.art ]| 5,808 10,561 <1845 .21 -0.436] 6,511 0,5668(-0,2694
5 2.0061| ©.0051

The values calculated for the aerodynamic
coefficients in these runs are given in column 1
to 4 of Table 5; column 5 contains the results
from the runs for the isolated main wing. The
reference length that applies to the values in
the table and to the values of the reduced fre-
quency is equal to the semispan of the.main wing
while the reference area is the square of this
length.

The central processor time for the four runs
for the oscillating configuration varies from

92 seconds for W= 0 to 122 seconds for W=
1.067.
+ -2
0 - ! //I
R Ve R B B S w )
A IMAGINARY
4,3 PART
o PCM
+ LLEM
_, -
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| +
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FIG. 14 LIFT ON THE MAIN WING DUE TO PITCHING
OSCILLATIONS OF THE FORWARD WING

The Lifting Line Element Method or the LLEM
for short is a generalization for unsteady flow
of the Vortex Lattice Theory9. The LLEM utilizes
complex cross-flow representation’ and Legendre
functions of the second kind4, Results from appli-
cations to the Viggen configuration of the LLEM
which is much like the independently developed
Doublet Lattice Methodl© were presented in Ref, 4.

We also show some early LLEM results together
with corresponding PCM results in Fig,., 14. This
figure illustrates the 1ift on the main wing due
to pitching oscillations of the forward wing about
its apex. The LLEM results which were obtained by
using only 9 elements on each half of the forward
wing and 27 elements on each half of the main wing
correspond to a separation between the wing planes
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that
wing

is 25 per cent of the semispan of the forward
while the PCM results'correspond to a separa-
tion of 18.4 per cent. It is apparent, however,
that even if a correction for the difference in
separation is made, the two solutions exhibit a
good agreement with regard to the small number of
elements in the LLEM-solution,

It may further be mentioned that the calcula-
tion of the interference 1lift on the main wing due
to deflections of the forward wing seems to repre-
sent a tricky problem. The solutions obtained by
the LLEi and the Vortex Lattice Theory in the
steady case have been found to be sensitive to
the arrangement of vortices and the solutions by
the PCH program appear sensitive to the number of
chordwise and spanwise factors in the approxima-
tions., Purther studies are therefore required if
solutions with increased accuracy are needed,

Conclusions 1

A Fortran program based on the Polar Coordinate
Method for calculation of aerodynamic forces on
oscillating wing configurations with control-
surfaces in subsonic flow has been investigated,
Its practical usefulness has been studied in
applications to the Viggen configuration and its
numerical accuracy has been investigated through
parameter variations and by comparisons with cer-
tain reliable results of other methods.

The investigation indicates that the program
works properly and that it produces reliable re-
sults if appropriate values for the arbitrary
parameters involved are supplied. For practical
applications it seems sufficient to use moderate
values for these parameters which implies moderate
computer times and costs.

For large values of the parameters, the pro-
gram probably yields high accuracy which may be
utilized for comparisons.
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0.

DISCUSSION

A. Das (DFVLR, Braunschweig, Germany) : As one of
the main results in your paper, the lift induced on
the rear wing due to oscillations of the front wing
in pitching motion has been shown. It comes out
that the contribution to the lift appears mainly as
a real part in the whole frequency range, while the
imaginary part is quite negligible.

This property may be attributed to the particular
configuration used in the example; - for a different
wing spacing or wing geometry the imaginary part may
play a significant role., In order to study this
effect and give more insight into this problem, some
parametric changes may be taken up.

V.J.E. Stark: For other tandem confiqurations, a
time delay roughly equal to the distance between

the two wings divided by the flight speed may appear
Results from other examples support this statement.



